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Most images have non-stationary properties, so they contain smooth regions and regions with abrupt transitions. These 
regions with different characteristics can be well highlighted in the wavelet domain. The wavelet decomposition of an image 
contains high and low energy areas (or coefficients with high and low absolute values). Maintaining the idea of point-wise 
thresholding and exploiting the interband dependence by determining a map of accounts using the concept of hierarchical 
correlation, in this article we propose and develop a new spatial adaptive filter that allows point-wise thresholding and 
exploits the interband dependence by determining a map of accounts using the concept of hierarchical correlation, being 
more efficient in terms of computational effort than the adaptive spatial filtering of wavelet coefficients with contextual 
modeling. The proposed algorithm was tested on different images, and from the analysis of the obtained data it appears 
that the effect of the threshold value used to obtain the contour map from the hierarchical correlation map does not depend 
on the processed image (as in the case of optimal threshold values in the case of soft truncation), but only on the dispersion 
of the disturbing noise. 
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1.  Introduction 
 

Researchers in the field of applied sciences and 

engineers working with data obtained from observations 

made on the environment know that there are no signals 

unaffected by noise. Under ideal conditions, the noise can 

reach insignificant levels compared to the useful signal 

level, so in many practical applications it is not necessary 

to process to remove the noise. However, ideal conditions 

cannot always be ensured, so that in other practical 

situations the useful signal is degraded by noise to an 

extent that may affect the interpretation of the 

experimental data. In such a case, however, there is the 

problem of eliminating or at least reducing noise from the 

input data, so that the interpretation of the results obtained 

after processing is as good as possible both in terms of 

PSNR and in terms of contour preservation.  

For many authors [1, 2], noise reduction is 

synonymous with smoothing input data (low-pass 

filtering), which, in the case of signals containing 

transitions, leads to loss of information. Therefore, noise 

reduction involves its removal in the conditions of 

preserving as accurately as possible the abrupt variations 

in the signal, variations that often have a high 

informational content. Noise reduction in signals can be 

performed both in the primary domain of the signal and in 

a transformed domain. The traditional domain for signal 

processing in the transformed domain is the Fourier 

domain, and the filter considered ideal for reducing signal 

noise is the Wiener filter. 

Advanced and efficient methods for reducing signal 

noise, based on Bayesian estimators, use statistical signal 

modelling based on a priori information. However, the 

"true" signal model is often not available in practice. In 

this case, Bayesian estimators cannot be used, methods 

based on nonparametric estimators being an extremely 

attractive alternative. Donoho and Johnstone [3] have 

shown that such estimators, despite their simplicity, 

perform almost ideal performances considering a wide 

variety of error functions when unknown functions belong 

to overly broad classes of signals that resemble signals 

belonging to the Besov classes, as in the case of more 

signals and images from nature. Such estimators can be 

implemented using the wavelet domain. The simplest and 

at the same time the first method of reducing the noise in 

the wavelet domain, called the hard truncation of the 

wavelet coefficients, is similar to the compression process 

with losses in the wavelet domain. The use of multiscale 

transformations, such as wavelet transformations, has led 

to significant advances in signal representation, 

compression, restoration, analysis, and synthesis. The 

fundamental reason for these advances is that the statistics 

of most signals in nature (voice, image), when 

decomposed using such bases, are substantially simplified. 

However, choosing a base adapted to the statistical 

properties of the signal is a problem. The traditional 

solution is the Principal Components Analysis, in which a 
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linear transformation is chosen to diagonalize the 

autocorrelation matrix of the input data. 

The best-known description of image statistics is that 

their Fourier spectrum decreases by a power law. Together 

with the invariance condition at translation, this would 

suggest that the Fourier transform is an approximate 

representation of the principal component analysis. For 

example, the classic solution to the problem of noise 

removal is the Wiener filter, which is obtained by 

modelling the coefficients in the Fourier range as 

uncorrelated and respecting a Gaussian distribution [4]. 

However, the use of bases other than Fourier allows the 

description of images by higher order statistics than the 

second order, while in the case of Gaussian additive white 

noise the statistical moments higher than two order are 

zero. This allows the design of effective methods to reduce 

Gaussian additive white noise in images. In [5] propose a 

method of soft reduction of wavelet coefficients that uses 

different threshold values not only depending on the scale 

and orientation as in [6] but adapted to the local statistics 

of signal in the wavelet domain. Such a spatially adapted 

threshold selection strategy is sometimes necessary 

because the use of a uniform threshold for an entire 

subband is not good enough. The essence of a threshold 

value is that it must be large enough to reduce noise, but 

small enough to be able to store the details in the signal. 

However, when the noise coefficients happen to be higher 

than the signal coefficients, the two mentioned goals 

cannot be achieved using the same threshold value [7, 8]. 

Spatially adaptive filters in the wavelet domain aim to 

achieve the best possible noise reduction performance 

while preserving the contours as faithfully as possible. 

Spatially adaptive filters in the wavelet domain are more 

efficient both due to the property of concentrating the 

signal energy in a small number of coefficients, a property 

common to many orthonormal transforms, and the 

interscale correlation, specific to wavelet transforms. The 

ability of the wavelet transform to adapt to local variations 

of the signal and noise leads to a faster and more accurate 

adaptation of the filtering parameters depending on the 

local characteristics of the signal. 

 

 

2. Experimental 
 

Most images have non-stationary properties, so they 

contain smooth regions and regions with steep transitions. 

These regions with different characteristics can be well 

highlighted in the wavelet domain. The wavelet 

decomposition of an image contains areas of high and low 

energy (or coefficients with high and low absolute values). 

High energy areas in the wavelet domain correspond to 

characteristics with abrupt signal variations such as 

contours or texture. Low energy areas correspond to 

smooth areas. When noise is added, it tends to increase, on 

average, the absolute values of the wavelet coefficients. 

We expect that especially in the smooth regions the 

dominant coefficients will be determined by the noise, the 

noise being more visible in these regions and therefore 

these coefficients must be removed. In regions 

characterized by steep variations, the coefficients possess 

most of the energy due to the signal, and a smaller part due 

to the noise (which is not very visible in these regions). 

Therefore, these coefficients can be retained unchanged or 

slightly reduced their absolute values, thus ensuring the 

preservation of most of the details, especially the most 

important. It is possible, in this way, to establish a strategy 

for adapting the threshold used for the soft truncation of 

the wavelet coefficients according to the energy of the 

considered area. 

In the field of image compression, it is accepted that, 

for a large class of images, the wavelet coefficients 

corresponding to each subband can be very well 

represented by a probability function with generalized 

Gaussian distribution [9]. The context modeling technique 

allows the modeling of each wavelet coefficient as a 

random variable with a generalized Gaussian distribution, 

with variable parameters. By determining the distribution 

parameters for each wavelet coefficient separately, it is 

possible to establish, in the case of each coefficient, an 

optimal threshold value. Maintaining the idea of 

punctually establishing the threshold value and exploiting 

interband dependence by determining a map of accounts 

using the concept of hierarchical correlation, we propose a 

new spatial adaptive filter, more efficient in terms of 

computational effort than described in the previous 

paragraph and which, according to Table 1, leads to better 

results. The proposed algorithm has 3 stages. In the first 

stage, the threshold values for each coefficient, necessary 

for the soft truncation of the wavelet coefficients, are 

determined based on the local statistics. The difference 

from the method set out in the previous paragraph is 

primarily in simplifying the determination of the local 

dispersion of the signal. For this we give up the selection 

of the coefficients used to determine the signal dispersion 

based on the random variable z, considering all wavelet 

coefficients contained in each window, but which has 

much smaller dimensions and we give up the use of the 

parent coefficient to evaluate local dispersion (from Table 

2 shows that this coefficient contributes less than 5.5% to 

the determination of the local signal dispersion). 

In this case, the local dispersion corresponding to the 

coefficient  (   ) will be given by: 
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 (   ) being the set of indices of the coefficients in the 

current window, and M is the number of coefficients 

contained in the window. 

The current threshold value will be given by: 
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Also, in this stage is determined the contour map 

based on the hierarchical correlation corresponding to the 

degraded image. 

In the second stage, all the wavelet coefficients of the 

detail subbands are subjected to a soft truncation 

operation, determining the coefficients: 
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    being the soft truncation operator with threshold. 

In the third stage, a correction is made on the 

coefficients   (   ) obtained in the second stage, 

depending on the contour map. Thus, the coefficients that 

were established as belonging to a contour are estimated 

by the arithmetic mean between the initial value and the 

value obtained in the second processing stage, the rest of 

the coefficients remaining unchanged: 
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We call this correction switched based on the 

hierarchical correlation map. Another possibility of 

correction on the coefficients   (   ) according to the 

hierarchical correlation map, this time a continuous one, 

which we propose is given by: 
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where  (   ) it represents the normed value of the 

hierarchical correlation corresponding to the coordinate 

coefficient (   ). 
Table 1 compares the results obtained in the case of 

processing subbands of details corresponding to the first 

scale of a wavelet transformation by the method described 

in [10] (adaptive soft truncation with contextual modeling) 

and presented in the previous paragraph and applying the 

first step of the proposed method. 

 

3. Results and discussions    
 
As can be seen from the data presented in Table 1, 

even in the case of applying only the first two steps of the 

proposed algorithm, better results are obtained both in 

terms of PSNR and in terms of contour conservation. 

Regarding the proposed method, it can be found that as the 

window size increases, the results are weaker both in terms 

of PSNR and in terms of coefficient C. This can be 

justified by the fact that those signal-induced wavelet 

coefficients are grouped, and once with the increase of the 

window their influence on the local dispersion decreases, 

this approaching the dispersion of the noise. 

 

 
Table 1. Comparative results obtained by adaptive soft 

truncation with contextual modeling and applying the first two 

steps of the method proposed in this paragraph, in the case of 

processing only the subbands of details corresponding to the first 

scale of a wavelet transformation. The side of the analysis 

window is 2L + 1 

 

 By adaptive soft 

truncation with 

contextual modeling 

(Chang) 

By applying the 

simplified 

algorithm, based on 

local statistics 

L PSNR 

(dB) 

C (%) PSNR 

(dB) 

C (%) 

3 28.98 64.74 30.00 67.14 

5 28.99 65.31 29.99 67.08 

10 29.02 64.74 29.90 66.82 

20 29.21 63.85 29.81 65.73 

50 29.31 64.53 29.76 66.20 

 

 

A first parameter of the proposed algorithm is the 

length of the window. The effect of this parameter, as well 

as the number of wavelet decomposition levels used on the 

image quality obtained after the second processing step is 

presented in Table 2, compared to the results obtained by 

soft truncation with optimal threshold values. A third 

parameter that influences the performance of the algorithm 

is the threshold value used to obtain the contour map from 

the hierarchical correlation map, the effect of which, on 

the whole filtering process, is presented in Table 3. 
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Table 2. Dependence of the results obtained in the first stage of the proposed algorithm, depending on the number of wavelet 

decomposition levels (n), the length of the analysis window (2L + 1). The results obtained by soft truncation with optimal threshold 

values on the same images are also presented 

 

 
 

 
Table 3. Dependence on the threshold value used to obtain the 

contour map from the hierarchical correlation map, in the case 

of the proposed method. Results obtained by using the ideal, real 

and filtered hierarchical correlation map are presented 

 

T
h

re
sh

o
ld

 v
al

u
e 

       

Image initial PSNR= 

26.07 db 

C = 64.61 % 

The second 

stage 

processing 

PSNR= 

30.88 db 

C = 64.29 % 

Ideal contour 

map 

Real contour 

map 

Filtered 

contour map 

PSN

R 

(db) 

C 

(%) 

PSN

R 

(db) 

C 

(%) 

PSN

R 

(db) 

C 

(%) 

0.050 30.93 65.17 30.29 64.38 30.39 65.03 

0.075 30.94 64.87 30.68 64.90 30.79 64.98 

0.100 30.93 64.90 30.82 65.12 30.84 64.75 

0.150 30.90 64.66 30.86 64.27 30.86 64.30 

0.175 30.89 64.59 30.87 64.58 30.87 64.32 

0.200 30.88 64.51 30.87 64.45 30.87 64.41 

0.225 30.88 64.38 30.87 64.32 30.87 64.38 

0.250 30.88 64.43 30.87 64.40 30.87 64.30 

 

 

 

 

 

 

 

 

 

 

 

 

The effect of the number of wavelet decomposition 

levels on the final results is presented in Table 4. 

It can be observed that in all the considered cases, 

better results are obtained in PSNR terms than in the case 

of soft truncation with optimal threshold values, in many 

cases obtaining even higher C coefficients than the initial 

ones, ie an improvement of the contours. 

Considering an ideal contour map, determined on the 

basis of the image not degraded by noise, the simulations 

show (Table 3) that by the proposed method an 

improvement of the contours can be obtained, expressed 

by higher values of the coefficient C, provided that the 

noise reduction is not affected, which is expressed by 

constant PSNR values. In the real case, only the noise-

degraded image is available, the contour map being 

determined based on it. 
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Table 4. Dependence of the results obtained by applying the 

filtering algorithm proposed in this paragraph, depending on the 

number of wavelet decomposition levels. The test images were 

256 × 256 pixels and were degraded with white Gaussian 

additive noise 

 

IM
A

G
E

 

 

 

Initial 

Values 

 

 

Stage 

processing 

Number of 

wavelet 

decomposition 

levels 

N = 3 

PSNR 

(dB) 
C 

(%) 

L
en

a
 

       

PSNR=26.

00 dB 

C=65.84 % 

after the second 

stage 

30.27 65.84 

using correlation 

map 

30.19 66.09 

with filtered 

correlation map 

30.22 65.98 

      

PSNR=20.

06 dB 

C=48.10 % 

after the second 

stage 

26.59 46.74 

using correlation 

map 

26.29 48.17 

with filtered 

correlation map 

26.50 48.20 

B
ri

d
g

e 

       

PSNR=26.

03 dB 

C=62.96 % 

after the second 

stage 

27.59 61.26 

using correlation 

map 

27.54 62.83 

with filtered 

correlation map 

27.56 62.49 

      

PSNR=20.

19 dB 

C=47.44 % 

after the second 

stage 

23.48 44.66 

using correlation 

map 

23.38 44.82 

with filtered 

correlation map 

23.46 44.49 

A
er

ia
l 

       

PSNR=26.

06 dB 

C=70.14 % 

after the second 

stage 

28.15 68.36 

using correlation 

map 

28.10 69.55 

with filtered 

correlation map 

28.13 69.39 

      

PSNR=20.

15 dB 

C=54.39 % 

after the second 

stage 

24.21 49.91 

using correlation 

map 

24.07 52.75 

with filtered 

correlation map 

24.17 52.02 

B
o

a
t 

       

PSNR=26.

03 dB 

C=64.53 % 

after the second 

stage 

30.88 64.61 

using correlation 

map 

30.80 65.22 

with filtered 

correlation map 

30.84 64.75 

      

PSNR=20.

07 dB 

C=47.50 % 

after the second 

stage 

27.07 47.54 

using correlation 

map 

26.72 48.84 

with filtered 

correlation map 

26.96 48.16 

 

 

 

As can be seen, false contour points appear in this 

case, resulting in a smaller amount of noise removed. 

Therefore, on the hierarchical correlation map, before 

determining the contours, we proceed to process it with a 

median-hybrid filter. As can be seen from the data in 

Table 3, this filtering operation leads to images 

characterized by PSNR values closer to those of the 

images obtained after the first two processing steps of the 

proposed algorithm, in the conditions under which an 

improvement of the contours takes place. 

The proposed algorithm was tested on different 

images with dimensions of 256 × 256 pixels and 512 × 

512 pixels, under conditions of their degradation with 

white noise and Gaussian dispersion additive. The results 

are presented in Table 3. 

The analysis of the data presented in Table 3 shows 

that the effect of the threshold value used to obtain the 

contour map from the hierarchical correlation map does 

not depend on the processed image (as in the case of 

optimal threshold values in the case of soft truncation), but 

only on dispersion. disturbing noise. Thus, for a noise 

dispersion the optimal value is between 0.1 and 0.15, and 

for, between 0.15 and 0.175. 

I approached this algorithm in invariant translation 

form in two ways: 

- A) by fully applying the proposed algorithm in invariant 

form to translation, ie by mediating the results obtained by 

applying all three processing steps on the cyclic 

displacements of the input image; 

- B) by partially applying the proposed algorithm (only 

steps 1 and 2) in the invariant form to the translation and 

performing the correction according to the contour map 

only on the result thus obtained. 

 

 
Table 5. Application of the proposed algorithm in invariant 

approach to displacement, in the two approaches proposed. 

There were 4 circular trips. The test images were 256 × 256 

pixels and were degraded with white Gaussian additive noise 

 

 

 

 

 

Image 

 

 

 

 

  

 

 

Initial 

Integral 

application of the 

algorithm in 

invariant form to 

translation 

PSNR 

(dB) 

C 

(%) 

PSNR 

(dB) 

C 

(%) 

Drone  0.05 26.00 63.94 31.07 66.70 

0.1 20.08 47.64 27.55 50.77 

PC 0.05 26.07 63.73 28.08 63.89 

0.1 20.17 48.02 24.17 46.44 

Compo- 

nents 

0.05 26.01 69.43 29.00 70.50 

0.1 20.10 53.90 25.27 56.47 

Car 0.05 26.03 64.12 31.97 67.28 

0.1 20.03 47.58 28.19 51.26 

People 0.05 26.05 65.47 32.68 68.70 

0.1 20.13 55.13 29.16 56.95 
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It is observed from the data presented in Table 5, that 

the invariant translation approach of the proposed 

algorithm leads to good results both in terms of PSNR and 

in terms of contour conservation. Only in one of the cases 

presented in Table 5 the initial image has a higher C 

coefficient than the processed image, otherwise the 

processed images have a higher C coefficient. This means 

that with the removal of the noise, an improvement of the 

contours is obtained. 

The integral application of the proposed algorithm on 

the circular displacements of the input image. 

The proposed algorithm leads both in the invariant 

approach to translation and in the simple one to good 

results both in terms of PSNR and of the C coefficient, as 

well as visually, as can be seen in Figs. 1, 2 and 3. 

Table 6 compares the two correction methods based 

on the hierarchical correlation map. It can be seen that in 

the case of continuous type correction, better results are 

obtained in terms of PSNR than in the case of switched 

type correction, especially for higher noise levels. 

However, this is done at the cost of poor preservation of 

the contours in the image, which is highlighted by lower 

values of the C coefficient. 

 

 

 

 

Table 6. Comparison between the correction methods based on 

the hierarchical correlation map. The test images are 256 × 256 

pixels and have been degraded with white Gaussian additive 

noise 
 

 

Imagine 

 

  

Initial Switched type 

correction 

PSNR 

(dB) 

C 

(%) 

PSNR 

(dB) 

C 

(%) 

Drone 0.05 26.00 63.94 30.19 66.38 

0.1 20.06 48.10 25.47 48.55 

PC 0.05 26.03 62.96 27.54 62.74 

0.1 20.19 47.44 23.17 46.32 

Compon

ents 

0.05 26.05 65.47 31.66 67.55 

0.1 20.14 50.96 26.49 55.08 

Car 0.05 26.24 66.29 30.73 65.94 

0.1 20.45 51.59 25.86 51.28 

People 0.05 26.03 64.03 30.80 65.84 

0.1 20.00 45.78 25.63 48.92 

 
 

 
 

Fig. 1. Images processed by the invariant approach to translation of the proposed algorithm in the two cases considered. 16 circular 

trips were considered. a. Drone image, 256 × 256 pixels, degraded with Gaussian additive white noise, PSNR = 26.03 dB, C = 57.42%; 

b. Image obtained by mediating the images resulting from moving the input image and processing according to the first two stages of the 

proposed algorithm, PSNR = 30.25 dB, C = 59.89%; c. Image obtained by applying the third stage of the proposed algorithm 

(correction depending on the contour map) on the image from point b, PSNR = 30.11 dB, C = 61.15%; d. Image obtained by applying 

the invariant integral to translation of the proposed algorithm, PSNR = 30.21 dB, C = 60.95% 
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Fig. 2. Images processed by the invariant approach to translation of the proposed algorithm in the two cases considered. 16 circular 

trips were considered. a. PC image, 256 × 256 pixels, degraded with Gaussian additive white noise, PSNR = 26.06 dB, C = 63.94%;         

b. Image obtained by mediating the images resulting from moving the input image and processing according to the first two stages of the 

proposed algorithm, PSNR = 31.60 dB, C = 65.12%; c. Image obtained by applying the third stage of the proposed algorithm 

(correction depending on the contour map) on the image from point b, PSNR = 31.38 dB, C = 64.88%; d. Image obtained by the 

integral invariant application to translation of the proposed algorithm (case A), PSNR = 31.53 dB, C = 65.29% 

 

 
Fig. 3. Images processed by the invariant approach to translation of the proposed algorithm in the two cases considered. 64 circular 

trips were considered. a. Components image, 256 × 256 pixels, degraded with Gaussian additive white noise, PSNR = 21.07 dB,              

C = 58.35%; b. Image obtained by mediating the images resulting from moving the input image and processing according to the first 

two stages of the proposed algorithm, PSNR = 23.91 dB, C = 60.05%; c. Image obtained by applying the third stage of the proposed 

algorithm (correction depending on the contour map) on the image from point b, PSNR = 24.00 dB, C = 61.53%; d. Image obtained by 

applying the invariant integral to translation of the proposed algorithm (case A), PSNR = 24.14 dB, C = 62.56% 
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4. Conclusions  
 

We can say that now, the most used noise reduction 

algorithms are those that use the wavelet domain, this 

being due both to their efficiency and simplicity, as well as 

to a strong theoretical foundation. 

This article addresses the issue of spatially selectable 

wavelet filters. The interest in such filters is determined by 

the fact that much of the existing information in the 

images is provided by contours, and most of the noise 

removal methods cause them to fade. Such filters can be 

designed starting from the finding that near the contours 

the noise is less noticeable than in the smooth regions, thus 

being possible to change the filter parameters depending 

on the level of activity of the processed region. In this 

case, at the cost of removing a smaller amount of noise in 

the regions containing contours, they can be better 

preserved. There is thus a compromise between the 

amount of noise removed and the quality of preserving the 

contours in the image. 

Also, in the article, a novelty filter is proposed. The 

method uses soft truncation of the coefficients, but this 

time the threshold value is calculated for each coefficient 

based on local statistics in the wavelet domain. On the 

wavelet coefficients thus obtained, a correction is made 

according to a contour map determined based on a 

hierarchical correlation map. 

Two correction variants were tested: a switched 

correction, in which case either the truncated coefficient is 

chosen, or the average between the truncated coefficient 

and the unprocessed one, depending on whether or not the 

respective coefficient belongs to a contour and a 

continuous correction, in which case a weighted sum of 

the two wavelet coefficients is performed, the values of the 

weights being calculated based on the hierarchical 

correlation coefficient. In the second case, images are 

obtained with higher values of PSNR, especially in 

conditions of higher noise level, but which have more 

blurred contours. 

Both variants use noise dispersion as a parameter, but 

the switched version also needs a parameter, namely the 

threshold value to obtain the contour map from the 

hierarchical correlation map. Obtaining images in which 

the contours are best preserved is done primarily in 

conditions of increasing computational complexity, and 

there is a decrease in the amount of noise removed from 

the image. 

 

 

 

 

 

 

 

 

 

 

 

We can say that the wavelet domain offers us the 

possibility to implement efficient noise reduction 

algorithms in terms of the amount of noise removed and 

which ensures a good conservation of contours; obtaining 

good performances under both aspects is done with the 

price of increasing the complexity of calculation. 

The performance obtained by using the noise 

reduction algorithm presented in this article differs from 

image to image. In the case of some of the tested images, 

the performance obtained using the implemented 

algorithms is significantly lower than the performance 

obtained using the same algorithms but applied to other 

tested images. 
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